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ABSTRACT

Several air breathing propulsion concepts for future
earth-to-orbit transport vehicles utilize air collection and
enrichment, and subsequent storage of liquid oxygen for later use
in the vehicle mission. Work performed during the 1960's
established the feasibility of substantially reducing weight and
volume of a distillation type air separator system by operating the
distillation elements in high "g" fields obtained by rotating the

separator assembly.

This contract studied the capacity test and hydraulic
behavior of a novel structured or ordered distillation packing in
a rotating device using air and water. Pressure drop and flood
points were measured for different air and water flow rates in
gravitational fields of up to 700 g. Behavior of the packing
follows the correlations previously derived from tests at normal
gravity. The novel ordered packing can take the place of trays in
a rotating air separation column with the promise of substantial
reduction in pressure drop, volume, and system weight. The resutls
obtained in the program are used to predict design and performance
of rotary separators for air collection and enrichment systems of
interest for past and present concepts of air breathing propulsion

(single or two-stage to orbit) systems.






I. INTRODUCTION

This report covers the work done by UCIG, Linde Division on
NASA Contract NAS3-25560 during the period of 2/88 - 3/90. It
essentially deals with the evaluation of "structured packing" for
use in the on-board rotary air separator column as an improved mass
transfer device. A special test-apparatu was built to evaluate the
critical packing surface using air/water fluid combination.
Several concepts for air breathing propulsion systems (ACES) for
future single stage to orbit launch vehicles require oxygen
enrichment of air and subsequent storage of liquefied, enriched air
for use as an oxidizer in rocket engines later during the vehicle
mission. Thereby, the need for having liquid oxygen on board
during takeoff is eliminated. Work performed at Linde during the
1960's showed that fractional distillation of air constitutes a
feasible and attractive method for obtaining a low weight and
volume enrichment system. The work culminated in the construction
and operation of a representative 1/20th scale boilerplate
separator which demonstrated functional feasibility and capability
of the concept to achieve high throughput at required efficiencies.

In fractional distillation, compressed air bled from the
engine at M2.5 to Mé is cooled to saturation conditions and brought
into countercurrent contact with a 1liquid reflux stream in
distillation columns where the more volatile nitrogen is
concentrated in the vapor phase and oxygen in the liquid phase.
The refrigeration required is provided by the liquid hydrogen fuel.
It was demonstrated that the weight and volume of the air
distillation system could be lowered substantially by operating the
system in a high gravitational field generated by rotating the
complete separation apparatus. This general concept was first
suggested by General Dynamics in the late 1950's and later refined
and demonstrated by Union Carbide Industrial Gases, Linde Division

(Ref. 1 and 2).



Earlier efforts by Linde (Ref. 3) involved reviewing the
results of 1960's work, reporting the results of the studies, and
examining the potential impact of the advancements made during the
last 21 years. This was documented and presented to the Air Force
personnel in February 1988. It clearly indicated that the concept
of compact rotating distillation air separators was feasible and
that volume and weight, which were compatible or even better than
the 1960's aerospace vehicle requirements could be achieved. Our
study of the impact of the new technologies has shown that the
advances have the potential to make the process more efficient,
provide lower pressure drops, simplify the device mechanically and
lead to substantial weight and volume reduction. Of the different
components and subsystems, the study indicated that the biggest
impact on the system weight and volume should come through the use
of structured packing Figure 1 in place of the conventional sieve
trays in the rotating distillation column, Figure 2. 1In addition,
the study has shown the potential for substantial flexibility in
the selection of operating conditions and the possibility for
respectable performance at turndown conditions with the use of
structured packing, Figure 3. This should allow air collection and
enrichment over a broader operating range of the vehicle, Figure 4
and thus help further reduce the air separator and liquefier size

and weight.

It is the purpose of this paper to review the results of the
current analytical as well as the experimental work at Linde on
evaluating the performance of structured packings. This paper
describes the apparatus for testing structured packing in a
rotating mode, presents a method for predicting the packing
performance and analyzes the results with respect to the design of
rotary separators for air breathing propulsion (single or two-stage
to orbit) systems.



FIGURE 1
STRUCTURED PACKING
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IT. BACKGROUND
Basic Distillation

The following section will give a brief overview of the basic
distillation process. Distillation is the physical process for the
separation of fluid mixtures which is based on the differences in
the boiling points of the components. For oxygen and nitrogen at
1 atm the boiling points are 90.2°K and 77.4°K respectively. The
different boiling points are one point on the vapor pressure curve
of each pure component. The vapor pressure is defined as the
pressure at which a pure liquid and its vapor can coexist in
equilibrium at a particular temperature. For a fluid mixture, such
as liquid air, in equilibrium with vapor, the composition in the
liquid phase is different than the composition of the gas phase due
to the differing boiling points and the vapor pressure curves of
its components. The process of distillation depends on the this
property. On a tray, as in Figure 2, the vapor which leaves the
liquid on that tray will be enriched in the more volatile or lower
boiling point component, in our case N,; while the 1liquid that
condenses from the vapor phase will be enriched in the less
volatile or higher boiling point component, in this case 0,. As
this process is repeated on each tray O, is concentrated in the
liquid phase. In a packed column the vapor/liquid contact occurs
in a continuous manner over the height of the packing and the mass
transfer is enhanced by the special design of the structured

packing, Figures 1 and 2.

Basic Description ACES Systems

Figure 5 shows the basic ACES system using a double column
distillation column (Ref. 4). Compressed air bled from the engines
is cooled to saturation conditions in a number of heat exchangers
against waste nitrogen and hydrogen. Saturated air cleaned of
contaminants that would solidify at low temperature is introduced
to the bottom of the high pressure column. As the feed air rises
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through a series of trays it interacts with down-flowing liquid
reflux; the rising vapor increases in nitrogen concentration -
whereas the falling liquid increases in oxygen concentration. At
the top of the column, the nitrogen enriched vapor is condensed in
the reboiler condenser unit against boiling oxygen-rich 1liquid
available from the low pressure column. The condensed liquid is
split into two portions with one portion introduced as reflux
liquid for the high pressure column and another portion which is
transferred to the top of the low pressure column. The oxygen
enriched liquid at the bottom of the high pressure column is
transferred into the midsection of the low pressure column, and
serves as liquid feed for the low pressure column. At the top of
the low pressure column, the rising nitrogen enriched vapor is
split into the two portions; one portion is removed as the waste
nitrogen stream, the other portion is introduced into the reflux
condenser and liquefied against the hydrogen refrigerant to form
additional liquid reflux for the top of the low pressure column.
The combined liquid reflux, available from the reflux condenser and
transferred from the high pressure column, flow downward through
the low pressure column against the rising vapor. At the bottom of
the low pressure column the oxygen enriched liquid is boiled in the
reboiler condenser against the condensing nitrogen enriched vapor
from the high pressure column to produce vapor boilup for the
bottom of the low pressure column. A portion of the downwardly
flowing oxygen enriched 1liquid is removed from the reboiler
condenser as an oxygen product stream. It should be noted that the
refrigeration requirement associated with the reflux condenser at
the top of the low pressure column is primarily that associated
with the refrigeration required to condense the oxygen stream so
that it can be withdrawn as a liquid stream and stored in tanks.

The liquid oxygen withdrawn from the system is cooled further
in the oxygen subcooler to the saturation temperature corresponding
to storage tank pressure. The waste nitrogen stream is compressed
to above the combustion chamber pressure, its refrigeration
recovered in the heat exchangers, and reintroduced into the



engines. Refrigeration for the processes is provided by the
sensible and latent heats of 1liquid hydrogen supplemented by
additional refrigeration produced at appropriate levels by hydrogen
expansion and recovery of the heat of ortho-para hydrogen

conversion.

This discussion will be limited to the distillation separator
proper, since it provides the greatest departure from conventional
technology. The above double column air separation process has
been very effective in commercial practice from the standpoint of
good product recovery with efficient use of refrigeration. These
two attributes also resulted in the selection of this process from
several alternatives studied for the ACES system.

In the rotating distillation column the fundamental
arrangement is essentially identical to the commercial two-column
reboiler-condenser except that the assembly is rotated. On the
rotating device, vapor is introduced at the outer diameter and
withdrawn at the inner while liquid flows radially outward. An
artist's concepts of the full scale airborne separators utilizing
tray technology for processing 227.3 Kgm/sec (500 lbs/sec) and
946.8 Kgm/sec (2083 1lb/sec) of air is shown in Figure 6. The
latter has the components arranged side by side to limit the outer

diameter.

The reason that mass transfer elements, depicted by sieve
trays in Figure 7, can be reduced in volume is the high
gravitational field which permits high vapor velocity before
entrainment of liquid droplets occurs and reduces the foam height
of the aerated liquid flowing across the trays. Surprisingly, mass
transfer efficiencies are high in spite of short contact time
between vapor and liquid. On the negative side, pressure drop
required to support the hydrostatic head is increased. The
throughput volume improvements possible for sieve trays at high "g"
are summarized in Figure 8. Here N, is defined as Rw?/g.

-10-
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The general dimensions and weights of a separator designed
during the 1960's on the basis of the tray technology is shown in
Figure 6, for an air separator with an air throughput of 946.8
Kgm/sec (2083 lb/sec) producing 90% O, liquid at 90% recovery was
4454.5 Kgm (9800 lbs) at a separator air inlet pressure of 1552.5
kPa (225 psia) and waste N, outlet pressure of 386.4 kPa (56 psia).
This was within the target of 5 Kgm of separator per Kgm/sec of air
flow, (5 lbs per lb/sec).

Use of structured packing instead of the conventional sieve
trays in the rotary air separator columns is considered to be the
key technology advancement with a large impact on the weight,
volume and mechanical simplicity of the separator column. Its use
should be able to reduce the separator weight and volume, Figure 9
and Table I, or even more importantly allow air separation at lower
inlet pressures, Figure 3, and thus increase the range over which
the air could be collected and enriched. This in turn, could help
reduce the weight and volume of the entire vehicle. The basis for
the weight comparison for the aluminum trayed and packed column is

given in Table II.

ITI. STRUCTURED PACKING

The most significant opportunity for the system's size
reduction appears to .be presented by the use of packing,
specifically structured packing in place of trays. Structured
packing provides a significant amount of surface area typically in
the form of corrugated sheet metal (Figures 1 and 2) along which
liquid is brought into continuous countercurrent contact with vapor
as in a wetted wall column. Flow of liquid and vapor are
essentially vertical or radial on a rotating device. At 1 “g" the
advantage of packing over trays lies in a substantially reduced
pressure drop at somewhat improved throughput. Since in the
rotating trayed column, the rotational speed and throughput per
unit volume was limited by pressure drop, the low inherent pressure
drop of packing permits a higher rotational speed and therefore

-14-
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significantly greater throughput while still achieving reduced
pressure drops. The higher rotational speeds have the side benefit
of also achieving higher heat transfer coefficients in the reboiler
condenser. Structured packing has seen significant commercial
advances over the past few years in 1 g applications. A variation
in random packing has been used in a high "g" rotating device by
ICI to achieve improved throughput and small radial heights per
transfer unit. For the ACES application, structured packing is
preferred since it has low pressure drop and its more ordered
geometry provides for higher throughput, as well as easier
installation in a rotating pressure vessel. An estimate was
prepared of distillation performance by extrapolating 1 "g"
correlations for the case at hand using a high density packing
(3281 m?/m®, 1000 ft?/ft’) made from 7.8 x 107° mm (0.002") thick
aluminum foil, Figures 10 and 11. It should be noted that since
significant extrapolations from 1 "g" behavior was required,
experimental confirmation of predictions by tests in a rotating

device was carried out.

Figure 9 summarizes the projected results for the packing.
It can be seen that weight savings of 17% are possible at constant
pressures. The reduced column heights with packing also permit
going from a side by side arrangement to a simpler stacked
arrangement of separator components for large throughputs.
Alternately the packing permits a 345 kPa (50 psi) reduction in
separator air inlet pressure. For the system studied by Rockwell
International, lowering of the inlet pressure resulted in favorable

tradeoffs in overall vehicle payload.

IV. ROTATING COLUMN TEST APPARATUS

In order to evaluate the performance of the structured
packing at different "g"s, a rotating column test apparatus was
built as shown schematically in Figure 12. 1Its scaled version is
shown in Figure 13 and the spray nozzle arrangement is shown in
Figure 14. As shown in Figure 12, the test of the packing had 2.5"

-18-
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inner radius and 7.0" outer radius with the packing height of 2.0".
A picture of the installed structured packing is shown in Figure
15. Its helical contour was engineered to provide a constant flow
cross section through each flow passage. The test packing could be
rotated between 500 and 1500 RPM with "g" loads ranging from 70 to
200. As shown in Table III, the packing was evaluated using the
air/water fluid combination to determine its flooding
characteristics at different "g" loads. The water flow, ranging up
to 12 gpm, was distributed at the inner radius of the packing using
a special nozzle while the air flow, up to 550 SCFM, was introduced
at the outer radius of the packing through a special rotary joint.
A transparent plastic cover was used at the top of the packing to
observe the flooding condition at the packing's inner radius. It
should be noted that the flooding condition occurs when the water
flow is impeded by the momentum of the air flow at a given "g"
level, such as to cause water holdup and frothing at the packing's

inner radius.

The tests consisted of operating the column at different RPM,
air and water flow rates to determine the envelope of the flooding
conditions and pressure drop. A typical test run would involve
varying of air flow at a given RPM and water flow rate until the
flooding condition is observed. Tests were conducted with two
types of packings as shown in Table IV. Randomly dumped packing
using glass beads, .12" dia, were tested to determine the low range
of the flow capacity while the Linde designed packing was tested to
evaluate the improvement over the random packing.

V. ANALYTICAL PREDICTION

Use of a rotating packed bed for enhanced distillation in a
compact configuration is a more recent development (Ref. 5). The
dramatic size reduction (Ref. 6) is achieved due to very high
allowable gas velocities resulting in small flow cross section and
due to high mass transfer coefficients resulting in reduced packing
height or HETP (Height Equivalent of Theoretical Plate). Dramatic
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Table III
Rotating Column Air/Water Test Apparatus

Test Conditions

Rotor Speed: 1500 RPM

Air Flow: 20,000 SCFH

Water Flow: 8 GPM

Pressure: 1 ATM

"g" Level:

709 7009

RPM: 500 1500
RAD/Sec 52 157
I.D. (6.0%) . 20 180
0.D. (14.0") | : 50 450
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Table IV

Types of Packing

Beads Linde Packing

Material Glass Aluminum
Shape Spheres Corrugated Foil Sheets
Nominal Size

0.D. (In.) | 0.12
Foil Thickness (In.) .006
Corrugation

No./In. 8

Height, In. . 045

Angle 45
Area Density, ft?/ft? 360 725
Porosity, € .43 ;82
Strip Height 2.27
Packing

I.D. (In.) 6.0 6.5

0.D. (In.) 14.0 14.0

Height (In.) 2.31 2.27
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size reduction of the air separation column when operated under

high "g" condition is depicted in Figure 16.

High allowable gas velocities prior to flooding can be
understood by examination of the dimensionless group in the
Sherwood flooding correlation (Ref. 7) for the gravity-flow packed
bed (Ref. 8), Figure 11. This dimensionless grouping, Py, as shown
below, is the ratio of the inertia force of the gas to the gravity
force acting on the liquid. In order to achieve a compact device
both high gas velocities and high surface areas are required. For
a constant bed geometry and Sherwood number higher gas velocities
can only be obtained by achieving higher gravitational forces.

Py

Fan” 9391[ } Pi
In the above group:
g: gravity acceleratlon, ft/sec2
U: gas superficial velocity, ft/sec
A specific surface area, ft%/ft’
€: packing porosity
Pgt gas density, 1lb/ft,
p.: liquid density, 1lb/ft3
Bt liquid viscosity, 1lb/hr
Bt water viscosity, 1b/hr

In a rotating packed column, the centrifugal force is used as
the driving force for liquid flow through the packed bed. Assuming
that the Sherwood correlation applies to the rotating bed, the
above "g" term should be replaced by the centrifugal acceleration
rw® (where r is the bed radius and o is the rotational speed,
rad/sec). The value of w? can be made many times higher than the
value of "g" by using high rotational speed and large radii. It
can be seen from the above Sherwood group that the superficial
velocity, U will increase with the square root of re?. It can also
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be seen that the rw? will have to be further increased to achieve
compaction with the use of high area density packing, Figure 1.
The advantage of the high porosity possible with the structured
packing (Table IV) resulting in high allowable gas velocities is
also evidenced in the above dimension group (Ref. 8). The
structured packing porosity should result in a factor of almost 7
increase in gas velocity over the glass bead packing based on the

Sherwood group.

Using the above correlation, the allowable superficial
velocity i.e., the flow capacity of the random beads packing and
the structured Linde packing using the air/water fluid combination
was determined as shown in Table V. It shows an increased flow
capacity by a factor of 2.6 of the Linde packing over the bead
packing at a flow parameter of .1, Figure 11 even though the
structured packing has almost twice the area density of the beads,
Table IV.

VI. EXPERIMENTAIL, DATA

The following results are based on limited testing of a
rotating column using air and water. A total of 28 flooding points
were obtained. The test results have shown the structured packing
will achieve the capacity goal and even better performance may be
achieved by optimizing the spray nozzle. Further cryogenic testing
is required to measure the mass transfer of the structured packing
which to date have been extrapolated from 1 g test data.

Experimental data on packings using beads as well as the
Linde structured packing are shown in Table VI and Figure 17.
Significant increase in the air flow capacity with increase in the
rotational speed of the test column is apparent from Figure 17. A
much higher flow capacity of the Linde designed structured packing
over that for the beads is also evident from Figures 11 and 17.
The five low flood points for the structured packing were probably
caused by incorrect water nozzle angle resulting in early flooding.

-30-



Table V

Flow Capacity of Packing Using Air/Water Combination

2 .2
PSH= __._U Ao _p_i .Ll.
R(l)2€3 P B

uo| PR | By f Bu)?
Ao pg p’l
for the test column
R = .25 Ft b, = 1lcp
® = 60 Rad/s b, = 1lcp
p, = 072 1b/ft3 p, = 62.4 1b/ft3

for the bead packing

360 ft?/ft? e = .43 fti/ft?
.13 at flow (L/G) ¢ (pg/pl)”z = .1

Ao
PSH

6.8 ft/s

for the structured packing

A, = 700 ft2/£t3 e = .82 ft3/ft3
Py= .25 at flow (L/G) (p/P)2 = .1
U, = 17.8 ft/s

under test conditions Ug = 2.62
U
8

This shows that the structured packing has a throughput of 2.6
times that of the bead packing.
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The effect of the spray angle and the packing ID entrance
angle is critical to the flooding performance of the structured
packing in a rotating column. The testing, although preliminary,
had shown this effect. The structured packing was fabricated to
meet the ID at ~90° to allow clear entrance of the water into the
passages. The water was injected at ~ 90° to the ID or directly
into the structured packing passages when the rotor was at rest.
Due to fit-up problems of the structured packing into the rotor the
packing had to be trimmed back from 5.5" to 6" ID. This changed
the packing entrance angle from near 90° to 45°. Testing at this
packing entrance angle and a 90° spfay angle produced very high
Sherwood flow parameters at 45°, 603 and 718 RPM, Figure 18, and no
difference in flooding between clockwise and counterclockwise

rotation was observed.

During testing the packing ID was damaged and had to be cut
back from 6" ID to 6.5" 1ID. This caused the entrance of the
packing to meet the ID at an angle of ~ 46°. The spray nozzle was
also changed in order that the nozzle could be moved closer to the
packing ID and the spray angle was set at 30°. This resulted in a
decrease in the flooding performance at the same RPM and a large
difference in flooding depending on whether the rotation was
clockwise or counterclockwise. This is shown by the 718 RPM

points, Figure 18.

The importance of the spray angle at higher RFPM is shown by
the very low 1061 RPM points, Figure 18. The injection angle or
tangential velocity of the water jet was not varied during the
tests. As the RPM is increased the jet tangential velocity should
also be increased in order to allow the water to smcothly enter the
packing channel. Not optimizing the jet angle or tangential
velocity is thought to have resulted in the low Sherwood number or

early flooding.

The data obtained to date has shown the performance
improvement which can be obtained with structured packing over
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trays and bead packing using a fixed injection angle. By
optimizing the liquid injection angle and packing ID starting angle
further increases in the structured packing capacity are expected.

Figures 19 to 24 show the air pressure drop through the
packing for a constant water flow rate. All of the plots show a
lower pressure drop at higher RPM which is due to the higher
gravitational field resulting in smoother liquid film.

VITI. PERFORMANCE T AT CRYOGENIC CONDITIONS

Using the Sherwood parameter for flooding conditions, the
capacities of the dumped and structured packings were calculated at
cryogenic temperatures for area densities of 360, 700 and 1000
ft2/ft3. Their flow capacities in terms of gas velocity (ft/sec)
are shown in Table VII. These flow capacities in terms of gas
velocity (ft/sec) and reflux ratio, L/G #/# were plotted in Figures
25 and 26 for the dumped and structured packings respectively.
Figure 25 shows that the dumped packing will allow gas velocities
in the range of 2-4 ft/sec for the low pressure column and in the
range of 1-2 ft/sec for the high pressure column. Thus, they will
fall far short of the desired velocity of about 11 ft/sec for the
low pressure column and about 3.5 ft/sec for the high pressure
column. The structured packing, with much better flow capacities,
however, meet the design requirements as shown in Figure 26. For
the low pressure column, for L/G of 1.125 and A_=1000ft?/ft’ the
desired velocity of 10.5 ft/sec is about 6% lower than the
experimental value of 11.2 ft/sec. For the high pressure column,
the performance of the structured packing at A, = 1000 ft2/ft3 is 8%
above the goal of 3.5 ft/sec at L/G of 0.5.

It should be noted that the high area density, of 1000 ft?/ft3
has been chosen for the structured packing in order to keep the
packing height, (i.e. HETP) low to achieve compactness and light
weight, Figure 10. In the final tradeoff, the HETP could be traded
off against the flow cross section to obtain an overall optimized
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separator system with respect to weight, volume, mechanical
simplicity, pressure drop, windage 1losses and range of air

collection Mach numbers.

VIITI. APPLICATIONS

Work in 1960's had indicated that the concept of compact
rotating air separators was feasible. This was based on use of
sieve trays in the rotating distillation column with weight and
volume as indicated in Figure 9(a). Subsequent studies in 1987-88
concluded that the key technology to benefit the future earth to
orbit hypersonic plane will be the structured packing to be used in
the rotating distillation column, Figure 9(b). Recent experimental
study at Linde with structured packing using air/water fluid
combination has reinforced the prediction made earlier about the
significant improvement in volume and weight possible with the use
of suitable packing. Nearly three fold improvements in capacity of
the structured packing over that of the random packing was observed
in the tests, Table V. Using the Sherwood correlation for
predicting the allowable gas velocities at the cryogenic
conditions, the superficial velocities of 11.1 ft/sec for the low
pressure column and 3.26 ft/sec for the high pressure column were
used in designing the advanced rotating distillation column. Mass
transfer characteristics of the packing was extrapolated based on
available data with an HETP of 1.0" for the packing area density of
1000 ft?/ft3, Figure 10. Based on the above information, a much
more compact rotating distillation column is envisioned as shown in
Figure 9(b). With significant reduction in the flow cross section
as well as the radial height of the column, coupled with improved
performance predicted for the reboiler/condenser due to its larger
radius and higher rotational speed, the distillation column could
be arranged in series rather than the earlier version with side-by-
side arrangement. The above series arrangement, not only leads to
more compact configuration but also greatly simplifies the flow
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logistics and piping arrangements and leads to a lighter weight
system. The above system, it should be noted, is designed for

production of 90% liquid oxygen, Figure 27.

Another potential use of a distillation separator is with
some recent propulsion concepts for single stage to orbit aircraft
which uses a LACE for low speed propulsion, scamjets for
intermediate to high speed propulsion and a rocket for the final
acceleration to orbital speed. The oxidizer for the rocket is
provided by collecting liquid air during the low to medium speed
propulsion phase. By inserting a simple single stage enriching
column into the system as shown in Figure 28, the oxygen
concentration in the collected liquid can be increased to 47%, thus
reducing the amount of liquid required and improving the specific
impulse of the rocket engine. With the scheme presented, the
system modifications are minimal and since existing heat exchangers
condense nitrogen reflux liquid, only a rotating distillation
section is required. For air flow of 100 lb/sec, the device would
have dimensions and characteristics as shown in Figure 28, a flow
path as shown in Figure 29, and column flow conditions as given in
Figure 30. The process flow schemaic is shown in Figure 31.

IX. CONCILUSIONS AND RECOMMENDATIONS

The air water testing has given reasonable confidence to the
throughput and pressure drop of the rotating cryo-column. The mass
transfer results are based on extrapolation of data from low area
density (200 ft?/ft}) structured packing at 1 g to ~ 1000 ft2/ft3 and
7 g's. These extrapolations must be verified through experimental

cryogenic testing.

In view of the pivotal role of the structured packing for the
rotating distillation column and with the encouraging results
obtained using the air/water fluid combination, it is recommended
that the effort be concerted to determine the mass transfer
characteristics (HEPT) of the packings. Furthermore, the
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performance of the structured packing in terms of both the flow
capacity and the HETP be determined under actual cryogenic
conditions. UCIG's Linde Division offers its established fixed
cryogenic distillation test facility with suitable streams
generated and instrumentation to evaluate packings at cryo
temperatures, Figure 32. A rotating column would be integrated
into the existing facility as shown in Figure 33.
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